Derivatives Of Trigonometric Functions:

Jadwalkan waxaa ku qoran xigsinta fansaarrada tirignoomateriga:

ySinxCosxTanxCscxSecxCotx
y’Cosx– Sinx Sec^2x – Cscx CotxSecx Tanx - Csc^2x


Tusaale (1):
Raadi xigsinta y= x^2 tanx

Furfuris:

Maadaama ay yihiin labo fansaar oo isku dhufsan (x^2) \times (tanx) , waxa aynu adeegsan doonnaa xeerkii isku dhufashada(Product rule) ee aynu horay usoo barannay ee ahaa:
(fg)' = f' . g + f . g'

Si aad u hesho xigsinta labo fansaar oo isku dhufsan( f \times g ):
– xig fansaarka hore(f’) oo ku dhufo fansaarka dambe oo aan xignayn(g), kaddibna waxa aad ku dartaa(+)
– xigsinta fansaarka dambe(g’) oo lagu dhuftay fansaarka hore oo aan xignayn(f).

Fansaarka hore(f) waa x^2 , fansaarka dambena(g) waa tanx

Raac Product rule: (fg)' = f' . g + f . g'

y= x^2 tanx

y’= (x^2)’ (tanx) + x^2 (tanx)’ Xig (xigsinta (tanx)’ waa Sec^2x )

y’= 2x tanx + x^2 Sec^2x

Tusaale (2):
Raadi xigsinta y= \frac {x^2}{tanx}

Furfuris:

Maadaama ay yihiin labo fansaar oo isu qaybsan, waxa aynu adeegsan doonnaa xeerkii isu qaybinta (Quotient rule) ee aynu horay usoo barannay ee ahaa:

  (\frac{f}{g})'= \frac{f’ . g – f . g’}{g^2}  

Si aad u hesho xigsinta labo fansaar oo isu qaybsan(\frac{f}{g}), raac tallaabooyinkan:
– Xig fansaarka hore(f’) oo ku dhufo kan dambe(g) oo aan xignayn, kaddib waxa aad ka jartaa(-)
– Fansaarka dambe(g’) oo xigan oo lagu dhuftay fansaarka hore(f) oo aan xignayn
– Kaddib u wada qaybi(÷) fansaarka dambe(g^2) oo labo jibbaaran.

Fansaarka hore(f) waa x^2 , fansaarka dambena(g) waa tanx

Raac quotient rule:   (\frac{f}{g})'= \frac{f’ . g – f . g’}{g^2}  

y= \frac {x^2}{tanx}

y’= \frac{(x^2)’(tanx)-(x^2)(tanx)’}{tan^2x}Xig

y'= \frac{2x tanx – x^2 Sec^2x}{tan^2x}